
Design Refactoring with Acellere Gamma
Partitioning Tool

A Case Study

Key Terms

2

•  CBO – Coupling Between Objects
https://help.mygamma.io/documentation/metrics/#coupling-between-objects

•  RFC – Response for Class
https://help.mygamma.io/documentation/metrics/#response-for-class
•  NOM – Number of Methods in a Class
https://help.mygamma.io/documentation/metrics/#number-of-methods
•  cdisp – Coupling Dispersion, calculated as CBO / RFC

•  ExecLOC – Executable Lines of Code
https://help.mygamma.io/documentation/metrics/#number-of-statements
•  LCOM – Lack of Cohesion among Methods
https://help.mygamma.io/documentation/metrics/#lack-of-cohesion-of-methods

•  God Class – Structural Design Anti-Pattern
https://help.mygamma.io/documentation/god-class/#anti-pattern-god-class

•  Overall Rating – Quality Score of a code component as calculated by Gamma
https://help.mygamma.io/guides/gamma-score/#the-gamma-score

•  For other terms, refer: https://help.mygamma.io/documentation/

Motivation

3

•  Certain metrics and design anti-patterns have a high correlation
with bugs

•  Example: bug counts increase with high NOM and a high coupling
dispersion

•  Example: A God Class has a 76% correlation with high number of
bugs (i.e. chances of high bug counts due to bad design)

•  Other design anti-patterns also have a fairly high correlation with
bugs

•  High values of these metrics/design issues also result in high
amount of code churn when a feature is to be added or a bug is to
be fixed

It follows that design issues are contributors to bugs, and improving design will reduce bugs and improve long-term maintainability!

Motivation

4

•  The adjacent picture shows code components with a
low design rating are frequently involved in bugs and
features (tasks)

•  This means they go through multiple, frequent changes,
are difficult to maintain, and if not refactored, can lead
to an increased risk of bugs and maintainability issues
over time

Refactoring support in Gamma to improve design

5

•  Typical design attributes related to high bugs in a component and frequent churn are: lack of separation
of concerns, lack of encapsulation and loss of abstraction

•  This results in monolithic components which are usually changed frequently as they aggregate multiple
disparate functionalities and are deeply coupled with other parts of the system

•  These design issues emerge over time when new functionality is added without evaluating if it belongs to
the right component, and hence results in unwanted dependencies, high coupling, exposure of data, and
loss of abstraction

•  Gamma’s Partitioning Tool helps developers fix such issues in existing code by identifying abstractions
and suggesting new components which will result in a cleaner, more maintainable and cohesive structure

•  It helps fix design anti-patterns such as God Class, which is responsible for bugs from design
perspective, and in that process, also improve metrics such as coupling, LCOM, Number of Methods, etc.

•  The following slides illustrate an actual example class refactored with the help of Partitioning tool, and
shows how it helps fix design issues

Refactoring Process and Example Source

6

•  Apache Kafka: https://github.com/apache/kafka.git

•  Java Class: org.apache.kafka.streams.processor.internals.InternalTopologyBuilder

•  This class was chosen because it is a hotspot (Gamma score < 0), changed frequently, and has several design issues

•  In this exercise, multiple iterations of refactoring were performed, guided by the Gamma Partitioning Tool, and at each
logical step, a Gamma scan was done to measure improvements

Before – Class InternalTopologyBuilder

7

•  Characteristics:

•  Frequently changed and participating in bugs (extracted from Apache Jira: https://issues.apache.org/jira/)

•  God Class and other design issues, many metrics violations

•  No duplication (good), some code issues

Frequently Changed, involved in bugs! Several Design Issues – esp. God Class! Many metrics violations – high coupling, lack of cohesion, too many methods,
high lines of code!

Hotspot: Overall Rating < 0!

Analysis - Class InternalTopologyBuilder

8

•  Public interface should remain
unchanged (as we don’t want the client-
side code to change)

•  As a result, some dependency-related
design issues (e.g. Global Butterfly) will
not be addressed, because we are not
changing the public interface

•  Existing class should not be a hotspot
anymore (overall rating > 0)

•  God Class design issue should be fixed

•  Class size, number of methods, coupling
should reduce

•  Resulting additional classes should not
be hotspots or God Classes

Refactoring conditions! Large public interface!

Before State – Identified Partitions

9

•  Partitions identified by the Gamma Partitioning Tool
suggest 3 separate abstractions: Source, Topic,
Node

•  An ideally designed class will have fewer (or just
single) abstractions as it represents a single
concern

•  As a first step, we will extract the Source, Topic and
Global abstractions

10

•  Node,
Store,
Pattern

•  Topic,
State, Store

Before State – Identified Partitions Drilldown

Iteration 1 – Refactor Action

11

•  Extract new class Refac_Topic to represent Topic, Store and Node builder related functionality, which is
fairly cohesive

•  Extract new class Refac_SourceSink to represent logic related to managing sources and sinks connected
with nodes in a topology

•  Also create a new class Refac_GlobalTopics to represent the global topics (“Global” partition in the
previous picture)

Iteration 1 result – Simplified Class InternalTopologyBuilder

12

•  Improved rating: -1.11 to -0.59

•  Improved design rating: -2.18 to -2.10

•  Improved cohesion (93 to 89)

•  Fewer Methods, Reduced Coupling

•  Still a hotspot (overall rating < 0), still a God
class, although less severe, improved overall
metrics

•  More improvement needed!

Improved Design Rating! Improved Metrics! Result!

Iteration 1 result – Simpler Partitions

13

InternalTopologyBuilder Refac_Topic Refac_SourceSink

•  In Iteration 1 we reduced 2 of the large partitions of InternalTopologyBuilder by creating the
Refac_Topic and RefacSourceSink classes which represent those abstractions more cohesively,
rather than aggregating everything in InternalTopologyBuilder

•  This resulted in simplified partitions for the original class, as well as the new classes, which have
fairly cohesive, and not large, partitions

•  Iteration 2 improves this further by additional partitioning of InternalTopologyBuilder

Result!

Iteration 1 result – Simpler Partitions

14

New Class!

New Class!

Iteration 2 – Identified Partitions – InternalTopologyBuilder

15

•  Extract Pattern (on
Topic) abstraction to
its own class

Iteration 2 – Refactor Action

16

•  Extract out the “Pattern” abstraction from InternalTopologyBuilder to a new
Refac_TopicPatterns class

•  TopicPatterns is a fairly isolated abstraction ideally represented in its own class, and is not
really the concern of InternalTopologyBuilder

Iteration 2 result – Class InternalTopologyBuilder – Hotspot Removal

17

•  Not a hotspot anymore: Rating changed from -0.59 to
0.64

•  God Class design issue fixed

•  Complexity under threshold (50)

•  Improvement in other metrics (reduced coupling, number
of methods, cohesion, lines of code, etc.)

•  Although other design issues and metrics violation exist,
the primary conditions for refactoring are met

Design - God Class Fixed!! Further Improvement in Metrics! Result!

In this Iteration, we successfully addressed the hotspot and God Class issues by fixing them via partitioning and introducing additional classes with cleaner
abstractions!

Iteration 2 result – Cleaner Partitions

18

InternalTopologyBuilder Refac_Topic Refac_SourceSink Refac_TopicPatterns

Refactoring resulted in cleaner partitions. However, in the process, we introduced another God Class: Refac_Topic, which is the subject of Iteration 3!

Iteration 2 result – Cleaner Partitions

19

New Class!

Iteration 2 result – New Class Refac_Topic

20

•  Detected as God Class, although not a hotspot (overall rating > 0)

•  Some metrics violated (CBO, LCOM, Complexity)

New God Class introduced – needs to be fixed, so run Partitioning on this class!

New God Class Introduced – Needs to be Fixed!! Some metrics violations – needs improvement!

Iteration 2 result – New Class Refac_SourceSink

21

•  New class looks ok, although still has some lack of cohesion, but under threshold (77)

•  Cyclic dependency should be removed (part of next refactoring – Iteration 3)

Iteration 2 result – New Class Refac_TopicPatterns

22

•  Design issues are related to dependencies (we are not changing the public interface of the
original class, so dependency-related design issues will not be refactored)

•  Looks good with very few metrics violations

Iteration 3 – Action :: Fix new God Class: Refac_Topic

23

•  Class InternalTopologyBuilder (the original target) has reached
the expected outcome – No hotspot, No God Class, Reasonable
metrics values

•  The newly introduced class Refac_Topic, though, was detected
as a God Class, although not a hotspot

•  Next step is to introduce additional refactoring of Refac_Topic to
better represent its abstractions and remove the God Class
design issue

•  Refactor Action: Extract node builder functionality from
Refac_Topic to a separate Refac_NodeBuilder class, as this
abstraction is not related directly to Topic

Strategy! Partitions: Refac_Topic!

Iteration 3 result – Refactored Class Refac_Topic

24

•  Class looks good, although still has some lack of cohesion (threshold is 77)

•  No further refactoring needed

Design - God Class Fixed!! Improvement in Metrics!

Iteration 3 result – Cleaner Partitions

25

InternalTopologyBuilder Refac_Topic Refac_SourceSink Refac_TopicPatterns

Refac_NodeBuilder
•  In this final iteration, we refactored Refac_Topic to extract Refac_NodeBuilder out of

it

•  With this we successfully refactored the original InternalTopologyBuilder to smaller
abstractions where each of the new abstractions are not hotspots, not God classes
and represent meaningful abstractions

•  The original class is also simplified, not a hotspot anymore and not a God Class
anymore

Iteration 3 result – Cleaner Partitions

26

New Class!

Summary

27

•  We eliminated the hotspot
InternalTopologyBuilder through
successive refactoring with the help of
Gamma’s Partitioning Tool

•  The resulting classes have no hotspots or
God Classes, which are strongly
correlated with bugs

•  In the process we also created more
meaningful abstractions which represent a
single concept, and are hence easier to
understand and maintain for new
developers

•  Future change is now more localized

•  The resulting classes have lower
complexity, lines of code, coupling and
RFC, and are overall more robust towards
change

Before!

After!

Summary

28

•  In this example we saw how Gamma’s Partitioning Tool is useful in design refactoring to eliminate
anti-patterns which correlate with bugs (e.g. God Class)

•  The refactoring exercise was targeted towards improving the internal structure of
InternalTopologyBuilder by creating meaningful abstractions, guided by the Partitioning tool

•  Further improvement is possible (beyond the scope of this exercise) by addressing the large public
interface of the original class – this is a fat interface, and hence has many incoming dependencies
due to multiple represented concerns (design issues: Global Butterfly and Local Butterfly)

•  Refactoring the public interface will result in distribution of incoming dependencies to other (more
relevant) classes, and avoid frequent changes to InternalTopologyBuilder

