DESIGN
ANTI-PATTERNS

Technical Debt

That
You Don’t See

The unknown truth about technical debt in software engineering

Vivek Reghunath
=-embold

Technical debt -
why should you care?

Technical debt is the price a software engineering
team has to pay for all of the quick fixes and shortcuts
taken over a while. Technical debt can be accumulated
due to business pressure or incomplete requirements
definition which invariably results in suboptimal code
design.

Most engineers are not sufficiently aware of the impli-
cations of accumulating technical debt. Well, what are
the implications anyway?

Technical debt slows down any engineering team as
the understandability and maintainability of the code
base degrades with mounting debt. Teams will spend
more time fixing bugs and less time developing new
features. Due to poor understandability, onboarding of
new engineers will take considerably more time slow-
ing down the team even further.

If technical debt is left unattended, repositories (and
related projects) will eventually reach the tipping point
of sustainability. This tipping point will force the team
to reengineer everything from the start, and force the
team into building with improved practices for sustain-
able code design.

Teams spend an average of

42%

time servicing technical debt
(17.3 hours/week/developer)

Reduced team efficiency
Increased onboarding time
Service disruption
Increased risk of bugs
Unmaintainable repositories

Depleted team morale

9 9 / 3
of total technical debt comes from
design anti-patterns

Sources of technical debt

Technical debt can come from localized issues such
as vulnerabilities(including “security issues”), code
issues and design anti-patterns. The first two (vulner-
abilities and code issues) are usually located on a
given line of code and are generally easy to find and
fix.

Software developers generally focus on easy to fix
issues such as code issues (code smells) and vulner-
abilities. While there is nothing wrong with this
approach, this is a less effective approach to address
technical debt and reduce maintenance costs over
time.

Design anti-patterns are manyfold more problematic
and should be targeted for appreciable technical
debt control. We will evaluate and quantify the nega-
tive effects of design anti-patterns and their contribu-
tion to the technical debt of software projects.

What are
design anti-patterns ?

In software engineering, an anti-pattern”’ is a pattern
that seems to work but is counter-productive and far
from optimal in practice. An anti-pattern can easily
result in unmaintainable and error-prone code. Usu-
ally, anti-patterns emerge when new functionality is
added incrementally without focus on continuous
refactoring.

Read more at : https.://docs.embold.io/anti-patterns/

Negative effects of design anti-patterns

Code changes vs Embold design rating 2

o)
§=
=
e
c
.9 0 -
(%]
S
o ° ° . o, s ©
o'-'.‘ c e ° ©
° - N e ° . ¢
Ne) o ¢°®’ o
€ - ..‘:o.o - o. ° . o
L ’'® o & .
3 oo ‘. - e © R e @
* " ’s ® o & . o [] ® & ° ®
| o [] []
¢° ® L) ® o o
eoe [] oo LJ
u .J?o R 3 .' < e ¢ e ™oy
° 4
Code changes for bug fixes Code changes for features

Read more about embold rating: https://docs.embold.io/embold-score/#embold-rating-system

Code components with a low Embold design rating are frequently involved in bugs and features (tasks)

This means they go through frequent changes and are difficult to maintain. If not refactored, they can
lead to an increased risk of bugs and maintainability issues.

Let's consider an Embold scan of the Apache CloudStack project®.
Design anti-patterns bring down almost every KPI é. Maintainability gets
significantly affected. Significant compromise in robustness and accuracy
KPlIs ¢ is also observed. Another important degradation is in analyzability
and understandability. This means, adding new features becomes slow as
more and more anti-patterns are added.

Maintainability
Understandability

Accelerated deterioration of engineering efficiency can be observed with
increased design anti-pattern density. With a high number of anti-patterns,
adding new features or fixing bugs becomes slow and results in high code
churn.

3.0.1.prereleases

© KPI Dashboard D g2t 2100m

Hotspot ratio in modules Accuracy Analyzability Changeability Efficiency Functionality Maintainability Portability Resource Utilization Robustness Security TestKPI Understandability

Calculating technical debt

v Vulnerabilities
{x} Code lssues

88 Design Issues
€D codclass

CLO-DI2156073 235

@ Global Breakable

CLO-DI2156192 235

€D LocalBreakable

CLO-DI2156405 235

& r:tinterface

CLO-DI2162078 235

CLO-DI2159859 391

TR

Class VirtualNetworkAppliancemanagerlmpl is a hotspot from project Apache CloudStack with 3413
lines of code and a whopping 96 methods! This class has 5 class-level design anti-patterns 7 and 110
method-level design anti-patterns ”.

Based on the code refactoring case study by Embold 3, effort estimation for fixing various

VirtualNe...

VirtualNe...

VirtualNe...

VirtualNe...

VirtualNe...

upgradeR...

37

VirtualNetwor

kinds of issues is as given below.

Impl,j...

0/96 Methods Tested

Search:

// Licensed to the Apache Software Foundation (ASF) under one

// or more contributor license agreements.
// distributed with this work for addition
// regarding copyright ownership. The ASF
// to you under the Apache License, Versio
// "License"); you may not use this file e
// with the License. You may obtain a cop
1/

// http://www.apache.org/licenses/LICENSI
17

// Unless required by applicable law or ag
// software distributed under the License
// "AS IS" BASIS, WITHOUT WARRANTIES OR COI
// KIND, either express or implied. See t
// specific language governing permissions
// under the License.

package com.cloud.network.router;

import java.util.ArraylList;
import java.util.Calendar;
import java.util.Collections;
import java.util.Comparator;
import java.util.Date;
import java.util.HashMap;
import java.util.HashSet;

fmaart faua kil Thavatans

O
[u]

[m[m]

Component Level
Brain Class

Fat Interface
Global Breakable

God Class

60600

Local Breakable

Explore Embold scan results ® to understand the context of the below calculations.

Issue Type Time required to fix
Class level anti-pattern 5 days 3
Method/function level anti-pattern 1day3

Code issue / vulnerability

2 minutes 3

Total debt from Class level anti-pattern =5 * 5 = 25 days
Total debt from Method level anti-pattern =1* 110 = 110 days
Total technical debt due to anti-patterns for the class = 25 + 110 = 135 days

This class has only 4 code issues that amount to a technical debt of 8 minutes!

Considering just code issues and vulnerabilities for technical debt calculation gives a false sense of

maintainability as we considerably underestimate the debt.

The big picture

Now let's calculate technical debt from different sources for the project Apache Cloud-
Stack.

[u]u]
ae

Total debt from Class level anti-pattern =

Component Level 1,630 5 *1630 = 8,150 days
€ srinclass 31 Total debt from Method level anti-pattern =
€T Direct Cyclic Dependency 182 1% 4426 = 4,426 days
€D ratinterface 920
€ clobal Breakable 116
€& clobal Butterfly 118
€D codclass 125
€D LocalBreakable 71 Total debt from all design anti-patterns =
) LocalButterfly 67 8150 + 4426 =12,576 days.
Subcomponent Level 4,426
Total code issues = 5,011
Al % Total debt from code issues = 5011 x 2 = 10,022 minutes.
@ Critical 721 1439 %
@ High 697 13.91%
Medium 258 65.02% Total debt from code issues = 167 Hrs = 21 days.
Low 523 6.45%
@ Info 12 0.24%

| 0.2% |

As we can see, to reduce tech-

o nical debt and bring down its ill
e 99 8 /o effects in a meaningful way, it
i is essential to address design

anti-patterns.

References

1. Striple’s 2018 study ‘The Developer Coefficient: a $300B opportunity for businesses’:
https://stripe.com/en-gb-de/reports/developer-coefficient-2018

2. Design refactoring with Embold partitioning tool - a case study:
https://embold.io/wp-content/uploads/2021/11/Gamma_Partitioning_CaseStudy.pdf

3. Code refactoring case study by Embold:
https://embold.io/wp-content/uploads/2021/11/Embold_Refactoring_CaseStudy.pdf

4. Embold rating system :
https://docs.embold.io/embold-score/#embold-rating-system

5. Explore Embold scan resullts:
https://explore.embold.io/
Username : explorer@embold.io
Password : explorer

6. Embold software KPlIs:
https://docs.embold.io/key-performance-indicator/

7. Embold design anti-patterns:
https://docs.embold.io/anti-patterns/

