
DESIGN
ANTI-PATTERNS

That
You Don’t See

Technical Debt

The unknown truth about technical debt in software engineering

Vivek Reghunath

Technical debt -
why should you care?
Technical debt is the price a software engineering
team has to pay for all of the quick fixes and shortcuts
taken over a while. Technical debt can be accumulated
due to business pressure or incomplete requirements
definition which invariably results in suboptimal code
design.

Most engineers are not su�ciently aware of the impli-
cations of accumulating technical debt. Well, what are
the implications anyway?

Technical debt slows down any engineering team as
the understandability and maintainability of the code
base degrades with mounting debt. Teams will spend
more time fixing bugs and less time developing new
features. Due to poor understandability, onboarding of
new engineers will take considerably more time slow-
ing down the team even further.

If technical debt is left unattended, repositories (and
related projects) will eventually reach the tipping point
of sustainability. This tipping point will force the team
to reengineer everything from the start, and force the
team into building with improved practices for sustain-
able code design.

Teams spend an average of

time servicing technical debt
(17.3 hours/week/developer)

42%1

Reduced team e�ciency

Increased onboarding time

Service disruption

Increased risk of bugs

Unmaintainable repositories

Depleted team morale

2

Sources of technical debt
Technical debt can come from localized issues such
as vulnerabilities(including “security issues”), code
issues and design anti-patterns. The first two (vulner-
abilities and code issues) are usually located on a
given line of code and are generally easy to find and
fix.

Software developers generally focus on easy to fix
issues such as code issues (code smells) and vulner-
abilities. While there is nothing wrong with this
approach, this is a less e�ective approach to address
technical debt and reduce maintenance costs over
time.

Design anti-patterns are manyfold more problematic
and should be targeted for appreciable technical
debt control. We will evaluate and quantify the nega-
tive e�ects of design anti-patterns and their contribu-
tion to the technical debt of software projects.

What are
design anti-patterns ?
In software engineering, an anti-pattern 7 is a pattern
that seems to work but is counter-productive and far
from optimal in practice. An anti-pattern can easily
result in unmaintainable and error-prone code. Usu-
ally, anti-patterns emerge when new functionality is
added incrementally without focus on continuous
refactoring.

Read more at : https://docs.embold.io/anti-patterns/

of total technical debt comes from
design anti-patterns

99%3

3

Negative e�ects of design anti-patterns

Let's consider an Embold scan of the Apache CloudStack project 5.
Design anti-patterns bring down almost every KPI 6. Maintainability gets
significantly a�ected. Significant compromise in robustness and accuracy
KPIs 6 is also observed. Another important degradation is in analyzability
and understandability. This means, adding new features becomes slow as
more and more anti-patterns are added.

Accelerated deterioration of engineering e�ciency can be observed with
increased design anti-pattern density. With a high number of anti-patterns,
adding new features or fixing bugs becomes slow and results in high code
churn.

M
ai

nt
ai

na
bi

lit
y

U
nd

er
st

an
da

bi
lit

y

Code components with a low Embold design rating are frequently involved in bugs and features (tasks)

This means they go through frequent changes and are di�cult to maintain. If not refactored, they can
lead to an increased risk of bugs and maintainability issues.

4

Code changes vs Embold design rating 2

Code changes for featuresCode changes for bug fixes

Read more about embold rating: https://docs.embold.io/embold-score/#embold-rating-system

Calculating technical debt

Total debt from Class level anti-pattern = 5 * 5 = 25 days
Total debt from Method level anti-pattern = 1 * 110 = 110 days
Total technical debt due to anti-patterns for the class = 25 + 110 = 135 days

This class has only 4 code issues that amount to a technical debt of 8 minutes!

Based on the code refactoring case study by Embold 3, e�ort estimation for fixing various
kinds of issues is as given below.

Explore Embold scan results 5 to understand the context of the below calculations.

Issue Type

Class level anti-pattern

Method/function level anti-pattern

Code issue / vulnerability

Time required to fix

5 days

1 day

2 minutes

Class VirtualNetworkAppliancemanagerImpl is a hotspot from project Apache CloudStack with 3413
lines of code and a whopping 96 methods! This class has 5 class-level design anti-patterns 7 and 110
method-level design anti-patterns 7.

Considering just code issues and vulnerabilities for technical debt calculation gives a false sense of
maintainability as we considerably underestimate the debt.

5

3

3

3

Now let's calculate technical debt from di�erent sources for the project Apache Cloud-
Stack.

The big picture

Total debt from Class level anti-pattern =
5 * 1630 = 8,150 days
Total debt from Method level anti-pattern =
1 * 4426 = 4,426 days

Total debt from all design anti-patterns =
8150 + 4426 = 12,576 days.

Total code issues = 5,011
Total debt from code issues = 5011 x 2 = 10,022 minutes.

Total debt from code issues = 167 Hrs = 21 days.

99.8%

0.2%
21 Days

10,022 Days

As we can see, to reduce tech-
nical debt and bring down its ill
e�ects in a meaningful way, it
is essential to address design
anti-patterns.

6

References
1. Striple’s 2018 study ‘The Developer Coe�cient: a $300B opportunity for businesses’:
 https://stripe.com/en-gb-de/reports/developer-coe�cient-2018

2. Design refactoring with Embold partitioning tool - a case study:
 https://embold.io/wp-content/uploads/2021/11/Gamma_Partitioning_CaseStudy.pdf

3. Code refactoring case study by Embold:
 https://embold.io/wp-content/uploads/2021/11/Embold_Refactoring_CaseStudy.pdf

4. Embold rating system :
 https://docs.embold.io/embold-score/#embold-rating-system

5. Explore Embold scan results:
 https://explore.embold.io/
 Username : explorer@embold.io
 Password : explorer

6. Embold software KPIs:
 https://docs.embold.io/key-performance-indicator/

7. Embold design anti-patterns:
 https://docs.embold.io/anti-patterns/

7

